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Overview

e |Introduction

* Proposed approach

* Preliminary results




The Need

Goals: Due to space
or energy
constraints, need to
— Digitize multiple
analog signals with
one or a few A/D

— Process multiple
signals using one
filter or amplifier
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Proposed Approach
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Proposed Approach

ﬂiyvk% LPF >| Modulation

A/D y(n) or £1sequence

N

converter >
(partial)

\2

% LPF > Modulation

f(s.,5,) <— CPU

gl
A

!

!

THE UNIVERSITY OF TEXAS AT AUSTIN
ELECTRICAL & COMPUTER ENGINEERING



Sparse Signal Example (Elad 2005)  “- °

predetermined
dictionary:
Curvelet+DCT

el iv
MUY o
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Which System of Equations

e To solve for c:

— Need at least as many
equations as dimension
of C C

— Rank of system =

dimension of ¢

— Numerically well - A
conditioned
o« J X=Ac
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The Value of Information

 For k sinusoids of jj[ l \ H | X i |
unknown frequency [ D|T TL Il JT TL |
need 2k+1 samples to ;:1“ JH[ W JH lHl Hl |
reconstruct signal R

Time signal
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Compressed Sensing in MRI

 Image reconstruction

b-SSFP Slldlngwmdow | ktSparse :
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After Lustig et al 2005



Compressed Sensing: Which
System of Equations

e To solve for c:

— Need at least as many
equations as dimension
of C

— Rank of system =
dimension of ¢

— Numerically well
conditioned

— Needs to work
~regardless of position of
* .+ . NON zero coefficients
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Restricted Isometry Property

e Technical condition

— Restricted isometry
property for
measurement matrix

— works as long as
number of samples
somewhat larger than
sparseness of signal
(number of components
In signal)

— Similar results for rank

" of random matrices

r= WVal

[Baraniuk et al 2008]

y; measured signal

®d: measurement matrix
Y': basis

o.. coefficients
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Solution

o “Slightly” expand f
bandwidth of signals before
mixing
e Train dictionaries on B f
signals from different
branches
_ [ .
B (1+9)B
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Proposed Approach
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Proposed Approach
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Proposed Approach
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Proposed Approach
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Switched Capacitor Filters -
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Problem Set-up

e Toy problem for exposition

— Signal consists of K arbitrary sinusoids
synchronized with sampling rate

e Assumption not needed

— Bandwidth expansion: Block processing of N >
2K sequential signal samples

e Sinusoids drawn randomly from an N point (real or
complex) DFT
— Assumption not needed

e Sequential processing possible
— Noiseless case
ULV ECE



Modulation Choices

 {£1} sequences:
— Preserve sample power
— Easy to implement

« Uniformly spread a
sinusoid over DFT
basis

2 -

Magnitude of DFT coefficients in dBs

— Channel appears as T

-18

“noise” to other channel
* Orthogonal sequences

0,

4+
6
8+
10 -
12k

14 -

20l
0

Block size 64

8000008000800 800LVEVLELELLELEVEVLLEBULLVSLEEISVLSVVSVLVES0Le0LY)

| | | | |
20 30 40 50 60
Coefficient index




Kasami Sequences

autocorrelation of Kasami 6 sequence

e Binary periodic 1
sequences of period
2N -1 where N =even ..

integer.
» Cross-

correlation values close ..
to Welch lower bound o2

. 2N2 different U Sl dnlidneldmh
S e q u e n Ce S -80 -60 -40 -20 Iaog 20 40 60




Signal Reconstruction

* Oracle: given position of signal frequencies,
perfect reconstruction possible

» Sparse reconstruction approach: greedy, L,,
re-weighted L,, lasso, etc.

— Limited by performance of algorithm
o Special techniques matched to signal
structure:

— Exploit properties of sinusoids and Kasami
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SPARS'11

e Main themes:

— Analysis vs. synthesis sparse models

e X=Ac with ¢ sparse vs. W' x sparse where W is a tight
frame

— Applications: classification, clustering, imaging,
PCA, ...

— Dictionary learning

-= Optimality results in compressed sensing
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Sparse Signal Reconstruction

e Greedy methods

— “Orthogonal least squares”

« Select dictionary entry most correlated with current signal
residual

« Update residual and decorrelate remaining dictionary entries
from selected one.
— L, methods

e Lasso type
minimize, ||Ac — x||, + Allc]|;

* Reweighted L,
minimize, ||wPc||l{+ A ||Ac — x|, , w; < 1/]|c]
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Exploit Signal Structure

 Assume same frequency content in both
channels
— Mixture superposition of signals
e s(n) =aW™ + Bk(n)W™,
- W =exp(2F), k(n+ M) = k(n)
es(n+ M) =sn)W"
— SVD of mixture matrix [y(n)] yields two signal

components using generalization of MUSIC type
algorithms

.y =[yn) - ym+M-1)]
UT 'JECE



Examples:
1 sinusoid,2 components, identical

frequencies in both channels
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Examples:
6 components, identical frequenues IN
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Audio Example

Separated
Sources

Input Signals
.
WA

sl _est.wav

fsl.wav A
5,(t)

5, (t)

S, (t
f . s2_est.wav
s2.wav n

X_mix.wav

3 KHz speech, 1.2 bandwidth expansion factor,
 Observed SIR and SAR in 40-60 dB range



Conclusion

e Sparse reconstruction theory may lead to
practical “sharing” of A/Ds amongst multiple
arbitrary but “sparse” analog channels

 Many guestions remain to be answered, e.g.

— Quantify required increase in bandwidth for

perfect separation, desired bit resolution and
target SNR,...

— Block vs serial processing and latency
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