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Overview

• Introduction

• Proposed approach

• Preliminary results



The Need
• Goals: Due to space 

or energy 
constraints, need to
– Digitize multiple 

analog signals with 
one or a few A/D

– Process multiple 
signals using one 
filter or amplifier 

Source: techyglobe.com

Source: 
medgadget.com
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Sparse Signal Example (Elad 2005)

Source

Outcome

predetermined 
dictionary:           
Curvelet+DCT



Which System of Equations
• To solve for c:

– Need at least as many 
equations as dimension 
of c

– Rank of system = 
dimension of c

– Numerically well 
conditioned

=

x =  A c

A

c

x



The Value of Information

• For k sinusoids of 
unknown frequency 
need 2k+1 samples to 
reconstruct signal

Time signal



Compressed Sensing in MRI
• Image reconstruction

After Lustig et al  2005



Compressed Sensing: Which 
System of Equations
• To solve for c:

– Need at least as many 
equations as dimension 
of c

– Rank of system = 
dimension of c

– Numerically well 
conditioned

– Needs to work 
regardless of position of 
non zero coefficients x =   



A



Restricted Isometry Property

y; measured signal
: measurement matrix
: basis 
: coefficients

[Baraniuk et al 2008]

• Technical condition
– Restricted isometry 

property for 
measurement matrix

– works as long as 
number of samples 
somewhat larger than 
sparseness of signal 
(number of components 
in signal)

– Similar results for rank 
of random matrices



Solution

• “Slightly” expand 
bandwidth of signals before 
mixing

• Train dictionaries on 
signals from different 
branches
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Switched Capacitor Filters

Switched capacitor summer 1/(1-z-1)

Switched bandpass filter

Q = C1V1 = C2V2

Source of figures: 
W. Grise, MSU



Problem Set-up
• Toy problem for exposition

– Signal consists of K arbitrary sinusoids 
synchronized with sampling rate

• Assumption not needed
– Bandwidth expansion: Block processing of N > 

2K sequential signal samples
• Sinusoids drawn randomly from an N point  (real or 

complex) DFT
– Assumption not needed

• Sequential processing possible
– Noiseless case



Modulation Choices
• {±1} sequences:

– Preserve sample power
– Easy to implement

• Uniformly spread a 
sinusoid over DFT 
basis
– Channel appears as 

“noise” to other channel
• Orthogonal sequences 0 10 20 30 40 50 60
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Kasami Sequences
• Binary periodic 

sequences of period 
2N - 1, where N = even 
integer. 

• Cross-
correlation values close 
to  Welch lower bound

• 2N/2 different 
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Signal Reconstruction
• Oracle: given position of signal frequencies, 

perfect reconstruction possible
• Sparse reconstruction approach: greedy, L1, 

re-weighted L1, lasso, etc.
– Limited by performance of algorithm

• Special techniques matched to signal 
structure:
– Exploit properties of sinusoids and Kasami 

sequences



SPARS’11
• Main themes:

– Analysis vs. synthesis sparse models
• x=Ac with c sparse vs. WT x  sparse where W is a tight 

frame
– Applications: classification, clustering, imaging, 

PCA, …
– Dictionary learning

– Optimality results in compressed sensing



Sparse Signal Reconstruction 
• Greedy methods

– “Orthogonal least squares”
• Select dictionary entry most correlated with current signal 

residual
• Update residual and decorrelate remaining dictionary entries 

from selected one.

– L1 methods
• Lasso typeminimize 	
• Reweighted L1minimize 	 	 , ∝ 1/



Exploit Signal Structure 
• Assume same frequency content in both 

channels
– Mixture superposition of signals• , – exp ,•
– SVD of mixture matrix yields two signal 

components using generalization of MUSIC type 
algorithms 

• , ⋯ 1



Examples: 
1 sinusoid,2 components, identical 
frequencies in both channels
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Examples: 
6 components, identical frequencies in 
both channels

10.98 dB signal
=.5  SNRrecon 34.4 dB

Reconstruction via L1 regularized LS; rel_tol=1e-4
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Audio Example
Input Signals

Separated 
Sources

)(1 ts

)(2 ts

)(1̂ ts

)(ˆ2 ts

s2_est.wav

s1_est.wav
fs1.wav

fs2.wav

x_mix.wav

• 3 KHz speech, 1.2 bandwidth expansion factor, 
• Observed SIR and SAR in 40-60 dB range



Conclusion
• Sparse reconstruction theory may lead to 

practical “sharing” of A/Ds amongst multiple 
arbitrary but “sparse” analog channels

• Many questions remain to be answered, e.g. 
– Quantify required increase in bandwidth for 

perfect separation, desired bit resolution and 
target SNR,…

– Block vs serial processing and latency 


